According to Gartner, "The market for document capture, extraction, and processing is highly fragmented. Data and analytics leaders should use this research to understand the process flow and differentiated capabilities offered by intelligent document processing solutions". Gartner's recently released "Infographic: Understand Intelligent Document Processing" covers these 6 critical flows in IDP.
4. Data Extraction
5. Data Validation and Feedback Loop
6. Integration
Source: Gartner, Infographic: Understand Intelligent Document Processing, Shubhangi Vashisth et al., 22 September 2021
This is the fifth and final post in the series where we explore Integration. Check out our earlier posts in this series, Capture and Preprocessing, Document Classification, Data Extraction, and Validation and Feedback Loop.
Meaningful data offers the best benefits when they are integrated with your business or enterprise systems, be it your on-premise or cloud system, or any incredibly complex system, such as an ERP. Today, businesses are focused on formulating comprehensive solutions for constantly-evolving customer problems or needs, and it is important to have an integrated system to ensure greater efficiency and business effectiveness
Why Integration?
When it comes to Business Intelligence (BI) & Analytics, unstructured data has been kept outside of data mining for the longest time. If you run a retail clothing store, when you sell a dress, you record its sale, you capture details like selling price, payment method, discount, tax, etc but you do not record how the dress looked. Did it have half sleeves or full, what kind of neck design it had. All of this information is potentially in the photo of the dress. This limits you from understanding your customer behavior. Questions like what percentage of people who buy faded blue jeans pair it with belts featuring over-sized buckles.
In the absence of a system that can make sense of unstructured data, it was always kept outside the realm of BI and Analytics. Structured data, like your sales record, also happens to be a small fraction of the overall data that you have access to. The majority of data that any organization deals with is unstructured data such as emails, documents, receipts, and photos. Now that IDP platforms can convert this unstructured data into structured data, it opens up exciting new avenues of understanding your customers and their behavior better through data mining.
Here are a few examples:
- From a receipt of other stores that you do not own, you can now figure out if people who buy a beer also buy wine. If you find they do, you could run a promotion selling them together.
- From payslips in mortgage application documents, you can figure out that most people who work for sales in the manufacturing industry usually get only X% of their sales commissions.
- From supporting insurance claim documents, you can automatically figure out what percent of a car repair cost is from body shop work vs replacement parts for a Toyota Prius serviced in Chicago.
You can take this analysis one step further by opening up your extracted data to search using Natural Language Query (NLQ) technologies. So, instead of setting up reports in advance, you can fire a query in natural language. If we had an automated assistant, you could ask, “How many mortgage applications did we receive for homes in the bay area yesterday?” And you would get the right answer.
Typical Architecture
A typical IDP integration architecture is as follows:
Integration Features
Some of the common features to check out in an IDP platform to evaluate their integration capabilities are as follows:
- No code platform
Plug and play or drag and drop options to connect upstream and downstream applications. - Question platform
Option for sales and marketing team to ask any dynamic questions and get answers on the fly. - Multi-platform Integrations
Support to raise queries from multiple platforms. - Data Synchronization
Option to automatically synchronize the latest changes from third-party platforms. - UI configurations
Options for users to configure integrations or data sources from the user interface. - Robotic Assistants
Routine functions handled by robotic assistants (bots). Sometimes, even make decisions to ensure increased accuracy through STP. - Analytics
Integration provides you an opportunity to have a holistic Analytics dashboard to evaluate the performance.
Integration methods
Some of the common methods used for IDP integration with third-party solutions are as follows:
- API
This is one of the most common code-based methods where multiple systems are connected through Application Programming Interfaces (APIs). - Webhooks
Similar to APIs, webhooks can be considered lightweight APIs for sharing real-time information among applications. - Orchestration
This is one of the effective integration methods where there are ambiguities or variations, such as the availability of semi-structured or unstructured data. It primarily focuses on automating a series of tasks to ensure seamless integration.
Here is a table that depicts the industry-relevant integration features and Infrrd’s capabilities:
FAQs
A pre-fund QC checklist is helpful because it ensures that a mortgage loan meets all regulatory and internal requirements before funding. Catching errors, inconsistencies, or compliance issues early reduces the risk of loan defects, fraud, and potential legal problems. This proactive approach enhances loan quality, minimizes costly delays, and improves investor confidence.
A pre-fund QC checklist is a set of guidelines and criteria used to review and verify the accuracy, compliance, and completeness of a mortgage loan before funds are disbursed. It ensures that the loan meets regulatory requirements and internal standards, reducing the risk of errors and fraud.
IDP (Intelligent Document Processing) enhances audit QC by automatically extracting and analyzing data from loan files and documents, ensuring accuracy, compliance, and quality. It streamlines the review process, reduces errors, and ensures that all documentation meets regulatory standards and company policies, making audits more efficient and reliable.
Yes, IDP uses advanced image processing techniques to enhance low-quality documents, improving data extraction accuracy even in challenging conditions.
IDP efficiently processes both structured and unstructured data, enabling businesses to extract relevant information from various document types seamlessly.
IDP combines advanced AI algorithms with OCR to enhance accuracy, allowing for better understanding of document context and complex layouts.